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The faceting transition of a crystal surface can be effectively simulated by a ferromagnetic Ising
model on a simple-cubic lattice. In this paper, we study a planar interface in a fully three-dimensional
Ising model, as well as an isolated bulk inclusion or droplet. We also demonstrate a method for
identifying the faceting transition and compare it with the conventional techniques. Finally, we
examine the effect of a driving force on the faceting transition of a droplet and the so-called dynamic
or kinetic roughening of a moving planar interface. These results are compared with the current

renormalization analysis of the faceting transition.

PACS number(s): 68.35.Bs; 82.65.Dp; 05.50.+q, 82.20.wt

I. INTRODUCTION

A stable interface between bulk phases has an equi-
librium shape which is determined by thermodynamic
considerations. On crystalline lattices, the equilibrium
shape may demonstrate a structural transition at a criti-
cal temperature. Physically, this entails a transition from
a faceted, highly correlated interface to a roughened,
wandering interface; thermodynamically, it corresponds
to the disappearance of the free energy of a crystal step
and the divergence of the fluctuation correlation length.
This phenomenon is referred to as the roughening or
faceting transition.

In this paper we use a variation of the Creutz multide-
mon algorithm on a cubic Ising lattice to study the char-
acteristics of the faceting transition via computer simu-
lation. We simulate a planar {100} solid-liquid interface
at equilibrium, a metastable solid droplet and an evap-
orating solid droplet suspended in a undercooled melt,
and a planar {100} interface in the presence of a thermal
gradient. The impact of geometry and external forces are
investigated and compared with analytic expressions.

In Sec. II, we describe the computer model itself. We
introduce enhancements which provide improved control
of the thermal diffusion mechanism necessary for the dy-
namic processes. In Sec. III, we review the basic critical
roughening theory and introduce an approach to char-
acterize the interface. We then compare our simulation
results with theory for the planar equilibrium interface.
In Sec. IV, we examine the consequences of the geometry
of a finite droplet on the transition. Noting the require-
ment of an external force to maintain metastability, we
review the current renormalization results for this con-
text and compare them to our simulations. In Sec. V, we
study the relaxation and evaporation of a finite droplet
when the stabilizing force is removed. Although there
is no true faceting transition, we propose a mechanism
to describe the transitionlike behavior that is observed.
Finally in Sec. VI, we return to the planar interface and
introduce a driving force via a weak thermal gradient.
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The kinetic faceting transition is observed and the re-
sults are compared with current dynamic descriptions.

II. THE SIMULATION MODEL

The simulation model has been discussed extensively
elsewhere [1] both in the context of equilibrium and
nonequilibrium problems. It has been shown to reliably
model thermal diffusion processes involved in relaxation
[2], steady states [3], and thermal instabilities [1,4]. Only
the basic model will be outlined here, with specific atten-
tion to details relevant to the present study.

The system is an L x L, x L, lattice of Ising spins, with
Lz = L. The boundaries are maintained via a combina-
tion of periodic conditions and contact with a heat bath,
depending on the particular requirements. The energy is
defined by an Ising Hamiltonian

H:—stisj_AZSia (1)

(3,5) i

where the spins are s; = =*1, > (i,j) is over nearest
neighbors, and A is a uniform external field. With
A=0, this system has a second-order phase transition at
kgT. ~ 4.512 J [5], in units where the Boltzmann con-
stant has been set to unity. Since the aim of this study
is to examine the behavior of an interface, a degeneracy
6 in the upper energy state is introduced, resulting in
a system with a first-order phase transition at 7;, < T,
with a latent heat of transition X of order 2A; the melting
temperature T, is defined by [6]

T = 2A/1n(5). @)

It can be set at any desired value by varying either A
or §. The presence of the external field and the spin
degeneracy does not affect the faceting transition behav-
ior of the model at coexistence; this is demonstrated in
Sec. III where the planar case is compared favorably to
established results.
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The key feature of this model is that the coexistence
temperature T,, is variable. This means that a stable,
equilibrium interface is accessible at all temperatures,
so that the roughening behavior intrinsic to the crystal
structure can be fully investigated without undesirable
nonequilibrium effects.

The dynamics of the system are controlled by a vari-
ant of the Creutz multidemon algorithm [7, 8]. An
L, x Ly x L, lattice of noninteracting demons has a one-
to-one correspondence with the spins. Each demon car-
ries a non-negative amount of energy 4. When a spin
flip is attempted, the demon is interrogated: If the flip
releases energy, it proceeds and the energy is given to
the demon. If the flip requires energy and the demon has
enough, it proceeds and the demon gives up the energy.
Otherwise, the flip is inhibited. Initially, the demons
are configured with a Boltzmann distribution of ener-
gies, since this is what is expected when there is thermal
equilibrium with the spin system. During a Monte Carlo
run, temperature in the neighborhood of a given spin is
defined in terms of the distribution of demon energies in
that immediate neighborhood T' = &4.

Although there is an inherent thermal diffusion in the
Creutz algorithm, it is spin activated and thus the diffu-
sion rate depends strongly on temperature. This makes
controlling the diffusion process difficult and introduces
problems with analysis. We therefore introduce an en-
hanced diffusion process which is independent of T' and
extremely flexible: Nearest-neighbor demons randomly
exchange position via a Kawasaki-like exchange with no
penalty. The diffusion constant D is thus related to the
fraction of all the demons fp which exchange per Monte
Carlo step (MCS):

_Jo
D_4d’

where d is the dimensionality; fp is of order unity and
d = 3 for all results shown in this work. In comparison,
the intrinsic diffusion process is sufficiently weak at all
values of T that it can be ignored.

The spin system is configured in one of two initial
states, either as a planar interface perpendicular to the
z direction between two bulk phases at (or near) coex-
istence (i.e., a simple solid - liguid interface) or as a
solid inclusion within a undercooled liquid melt with
the solid at T}, and the liquid at T' < T,,. In the first
case, the z = 0 and z = L, ends of the system are main-
tained at a constant temperature using a Metropolis al-
gorithm, while the sides are periodic. In the second case,
L, = Ly = L, and all six sides are periodic and main-
tained at constant 7". The phases are initialized with
an average spin magnetization appropriate to the local
temperature, using mean-field expressions for the bulk
magnetization.

III. THE PLANAR INTERFACE
AT EQUILIBRIUM

The faceting transition of the {100} interface of the
three-dimensional (3D) Ising model is understood to be
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an infinite-order Kosterlitz-Thouless transition [9] with
a characteristic temperature dependence of the step free
energy, step-step correlation length, and interface width
[10]. The behavior of the interface above and below the
transition is not as well known; we describe it in terms
of the surface’s geometry and its thermal fluctuations.

A. Theory

The step free energy has been shown to be the dual
conjugate of the inverse XY spin-spin correlation length
[11], so that it goes to zero at T'g like

E,e B/VTR=T T _ Tp—
E; = (3)
0, T =Tk,

where B is a nonuniversal constant. The characteristic
length for correlations between thermal fluctuations has
been identified as the dual conjugate of the vortex-vortex
correlation length in the XY model [12], and near Tgr
diverges like

goeB/ VIr=T 3 T— TR—
£= (4)

o0, TZTR;

here, B is the same nonuniversal constant as before. Sim-
ilarly, based upon the height-height correlation function
near Tg [12], the mean-square width increases like

(w¥(T)) <« C+1/\/Tr—1T, T — Tr— (5)

where C is a constant. Note that there is no explicit
finite-size dependence in (5); this expression applies to
systems of size L > &(T"). When L < £(T'), the interface
appears as if it were roughened.

Above Tk, for a finite Ly X L, x L, system, (w?) varies
with L (= Ly = L) and T like

(w¥(L,T)) o« In(L)(1/m?+ CVT —1Tg), T — Tr+
(6)

where C is a nonuniversal constant. This behavior of
(w?) has been observed in computer simulations and used
to identify the transition temperature for the 3D Ising
model as [13]

Tr/T. ~ 0.542 £ 0.002.

This is consistent with analytic approaches [14, 15] which
predict

Tr/T, ~ 0.546 £ 0.004.

The interface can also be characterized away from the
transition region. At temperatures above Tr, we know
[16] that the width varies as

In(L) T

2
(WAL, 1)) oc =2

T >Tg. (7

The factor T in this expression does not appear in Eq.
(6) because, compared to /T — Tg, it is approximately
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constant near Tg.

For present purposes, it is important to note that at
T < Tgr, (w?) is a single averaged aspect of a more funda-
mental quantity, the fluctuation probability density Ps.
Analysis of this distribution provides a more reliable mea-
sure of the faceting transition, with better statistics, than
other approaches in the literature. We define it in terms
of a faceted reference plane, upon which there is a col-
lection of microfacets which reflect the stochastic balance
between the available thermal energy and the free-energy
cost of forming a facet step. A microfacet is a small is-
land on the interface which is one lattice constant higher
than the reference plane and has a characteristic size [;
it is equivalent to a nucleation site in a 2D system. At a
given temperature T, the distribution of microfacet sizes
is Boltzmann-like

P:(1,T) = Qe BrO/T,
E(l) is the free energy of a facet of size | , given by

E¢(l) = 4lE,(T) — al®? AEy(T),

assuming the site is square to first approximation (i.e.,
small and on a cubic lattice) and far from any other site.
Here, AE is the bulk free-energy difference and a is the
lattice constant. If the interface is assumed to be at coex-
istence (i.e., AEy = 0), the condition [ P¢(I,T)dl = 1
defines the prefactor to be

4F
Q= '—,1_‘—8-64E"/T.

Note that the lower limit of the integral is unity; this
reflects the discrete nature of the lattice which cannot
support a microfacet of a size smaller than [ = 1. The
distribution Py (¢, T') then measures the relative probabil-
ity of a given size of microfacet appearing on an interface
of infinite extent.

The mean microfacet area (A) is then

(A(T)) = /1 “ 2 P, T)dl

T T
=1+2—E-;<1+ZE:>. (8)

Thus as E; goes to zero at Tr (3), the mean facet area
diverges strongly to infinity. This behavior was antici-
pated by Weeks and Gilmer [17] from a visual inspection
of Monte Carlo simulations of a flat interface.

Similarly, the variance o2, which measures the disper-
sion of the microfacet area around (A), is

o) = [0t - ) P D
=6 (4_1Eﬂ;)2 + 16 (4—:2:)3 + 20 (42.9)4,

T<Tr (9)

and the uncovered fraction Ag of the reference plane,
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which by definition, goes to zero as T' — Tr—, becomes

T T
Ao=1—C’4E3 (1+4E8>, (10)

where C is a constant which is model dependent. In the
same regime, the interface width is proportional to the
fraction of the surface covered by microfacets,

(w?(T)) o (1= (Ao))* (11)

an expression which is consistent with (5) in the limit
T — TR—.

As T — Tgr—, microfacets begin to overlap, correc-
tions to Egs. (8)—(10) for step-step interactions become
important, and the simple microfacet description would
seem to be less useful. However, it can be used quite
close to T, since the essential physics is captured by the
abrupt manner in which E; goes to zero. Indeed, near
TR, the description is consistent with the established re-
lationship between the thermal correlation length and E
as expressed by Egs. (3) and (4). To see this, we identify
the mean facet size (I) as a measure of the correlation
length, so that

o (l) =1+ (12)

4E,’
note that in the thermodynamic limit of infinitesimal
fluctuations (i.e., using f0°° instead of f1°°), we recover
the form of the Fisher relation for the square Ising lat-
tice [18], & = T'/vap where the 2D surface energy cor-
responds to the step-free energy vop ~ E;. Since ana-
lytic results are available for E; of the 3D Ising model
[14], this expression also provides a useful description of
& when T < Tg.

Above Tg, the crystal surface is no longer faceted.
However, the microfacet distribution can still be defined
via a geometric analysis, and the mean facet area (A) can
be related to the mean curvature R, so that

(A) x1/k < T~Y2, T > Tg. (13)

Details of this relation are given in the Appendix.
B. Results

To examine the behavior of an equilibrium planar
interface of {100} orientation at coexistence, the co-
existence temperature was varied over T = T,, €
[0.2T,, 0.8T;] through the external field via (2); the spin
degeneracy was maintained at § = 2 for all runs. During
the simulation, the interface was permitted to fully relax,
requiring approximately 1000 MCS. The statistics were
based on the final state of one to six runs, depending
upon the proximity of T,, to Tr and upon lattice size
L; larger systems required only one run to provide useful
statistics. Lattice sizes were varied, L € [32,512], with
the system height held at a constant L, = 24; this was
sufficient to permit the largest systems at the highest T
to relax to a fully roughened state without encountering
the upper and lower boundaries. Figure 1 shows a series
of equilibrium planar interfaces at temperatures above



47 SIMULATION STUDIES OF THE FACETING TRANSITION IN . ..

T=0.55Tc ™

and below Tg.

In order to make contact with previous studies [13]
and the analytic predictions (5)—(7) and (11), the width
of the interface (w(T)?) was measured. This is defined as
the mean-square width of a single-valued surface which is
derived from the actual interface by elimiating all over-
hangs and bulk fluctuations. At most temperatures of
interest, this is a very good approximation. Figure 2
shows (w?) for various L over a range of T: Away from
Tr ~ 0.545T, [14], the data follow both (7) and (11) in
a credible manner, and near Tg are consistent with (5)
and (6) (see inset) although too sparse to confirm them
in detail. The data are similar to that of a recent study
by Mon, Landau, and Stauffer [13] for systems of com-
parable size, in that finite-size effects are not very pro-
nounced. From the position and sharpness of the cusp
in the data, the faceting transition is estimated to be
Tr/T. ~ 0.54 £ 0.01; this can be improved by producing
more data points with better statistics near the critical

2-8 T T T T
0.68
2.4
0.64
2.0 0.60 B
0.56
N; 1.6 0.53 0.55 0.57 B
Viep *- 512 .
o — 128 °
0.8+ -
o — 32
0.4+ -
o
1 1 1
09302 05 06 07 0.8
T (units of Tc)
FIG. 2. The mean-squared width (w?) of the equilibrium

planar interface at T' € [0.3T.,0.8T.] for system sizes L =
32,128, and 512. The solid lines are the analytic expressions
(11) and (7); note the finite-size dependence of the data above
Tr. The inset shows the data near Tr with the solid lines
being the expressions (5) and (6).
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FIG. 1. Equilibrium planar interfaces
for a 64 x 64 x 24 system at T =
0.4T¢,0.5T,,0.55T¢, and 0.7T.. The lighter
grey indicates higher surface level.

region, using the critical expressions for the width for
analysis as did Mon, Landau, and Stauffer.

However, the analysis of the facet-size distribution dis-
plays the transition much more clearly using the same
data. Figures 3 and 4 show (A4) and 2. Their behav-
ior is divergent near Tr and shows a distinct finite-size
scaling at and above the transition, with o2 most clearly
indicating the transition. Examining the divergence in
the data, the transition temperature is estimated to be
Tgr/T. ~ 0.542+0.005. The expressions (8) and (9) are in
good agreement with the data, using the low-T" expansion
for E;(T') of the 3D Ising model from Holzer and Wortis
[14]. Above Tr, (A(T)) is expected to follow T=1/2 (13);
our results are consistent with this prediction, although
the power law is too weak to fit unambiguously to the
limited range of data.

In Fig. 5 we show the normalized area of the reference
plane Ag. The data display a clear point of inflection
near the anticipated Tr; from this, we estimate Tr/T, ~
0.542 £ 0.008. For the largest system (L=>512), the data
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FIG. 3. The fractional area Ag of exposed reference plane
for an equilbrium planar interface at T € [0.3T, 0.8T¢] for
system sizes L = 32,128, and 512. The dashed line is the
analytic expression (10) for L = oo.
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FIG. 4. The mean microfacet area (A) for the equilibrium
planar interface at T' € [0.3T¢,0.87;] for system sizes L =
32,128, and 512. The dashed line is the analytic expression

(8).

agree well with (10), again using the expansion expression
for E4(T).

IV. THE METASTABLE DROPLET
AT EQUILIBRIUM

When the solid-liquid interface bounds a finite droplet
instead of an infinite plane, all possible surface orien-
tations are present. Below the faceting transition, the
{100} reference plane manifests itself as six macrofacets
with {100} orientation on a roughly cubical equilibrium
crystal shape, with the macrofacets joined by curved,
roughened surface. Equilibrium transition behavior is
not strictly observable on such a droplet because, at co-
existence, it is not stable; the system will tend to mini-

1.0 == . . ; ]

q o e
q ° LN
o \
0.8+ ° —
4 — 512 ‘.
O‘\
0.6 - \ =
o a — 128 :
< \
Qo
0.4 'o .
o — 32 1 ©
h o,
e
0.2 oo 4 =
\a
Aa
A a °
0. 1 1 'a ‘+ 2°%a a 4
83 04 05 06 07 08

T (units of T )
c

FIG. 5. The variance o? of the mean microfacet area for
the equilibrium planar interface at T' € [0.37%, 0.87%] for sys-
tem sizes L = 32,128, and 512. The dashed line is the analytic
expression (9).
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mize the energy contribution of the interface by reducing
the surface area and evaporating the droplet away. A
unique counterforce F' is required to balance the surface
tension and provide a metastable interface; the equilib-
rium faceting transition is modified by the presence of
this force [19].

A. Theory

Consider the free energy of a spherical droplet of radius
R:

Ep = 47R%y — %ﬂRaAEb,

where AEy is the bulk free-energy difference and ~ is
the surface energy. There is a metastable point where
dEr/dR = 0 at the critical radius

R =2
AE,
When R > R*, the droplet will tend to grow, and when
R < R*, the droplet will tend to shrink. At coexistence,
when AE, = 0, R* becomes infinite, and all sizes of
droplet will shrink. In order to study the faceting tran-
sition of a finite droplet at equilibrium, there must be a
finite bulk free-energy difference AE}. There will only
be a static interface in the presence of a driving force or
overpressure F' o« AEy. The effect of this force on the
faceting transition is that the T of the finite droplet in-
terface is depressed below the transition temperature of
the planar interface; as well, the transition behavior is
spread over a greater range of T. Neither curvature nor
finite-size effects can be suggested as the origin of this
behavior; they may influence the scaling of the critical
behavior but not the critical temperature itself.

For a static, faceted interface at temperature T,
Nozieres and Gallet [19] predict that a characteristic force
F™ is required to shift the faceting transition to Tj < Tr
such that the interface appears to be rough:

F*(Tk) = va/€ = E3d® [, (14)
where £(T) is the step correlation length and a is the
lattice constant. This expression can be compared to our
data using values from analytic sources [14] for E; and
5.
Visual inspection of the equilibrium crystal shape
(ECS) shows a distinct dependence on T (see Fig. 6).
The droplet is exactly cubic at T' = 0; the corners become
rounded as T increases; the faceted faces of the cube are
circular and shrink as T approaches Tr; the macrofacets
disappear completely at Tr, leaving only a roughened
surface. Finally, as T approaches T, and the surface ten-
sion becomes isotropic, the cuboid becomes spherical. It
has been noted that the surface of a finite crystal can be
mapped onto a two-phase system [20], with the curved,
roughened portions of the surface representing one phase
and the flat, faceted regions representing the other. The
edges of the macrofacets below T are then phase bound-
aries and their size and shape correspond to the equilib-
rium crystal shape of a 2D droplet; this shape has been
well defined theoretically for the nearest-neighbour 2D
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Ising model [21, 22]. The radius of the approximately
circular face has been defined analytically through per-
turbative expansion as a function of T' [22]; the inset in
Fig. 7 shows the analytic normalized facet radius r¢(T)
as a function of temperature for directions parallel and
diagonal to the Cartesian axes.

B. Results

To study the metastable droplets, we choose to look at
an L x L x L system with a droplet of size ¢ x £ x £ where
£ = 0.75L. The system parameters are chosen to satisfy
metastability (i.e., R & R*), and the overpressure re-
quired to maintain metastability F™* is provided by a bulk
free-energy difference resulting from setting T, slightly

lo4 T T T T T T T
12 1.2 |
| SET 0.8
1.0} V%t:-‘z.:-.%\.\‘ 0.4 —
LA
o8l ..-»..&.ZZA.\\‘:‘?),o 02 04 06
Rl L .\,:\ a
0.6 - SEUAN 4
4 - 128 wely

04f &~ 96 Thptal
. o — 72 B}\\ q

o2f ° — 84 S
' T TR

0 1 1 1 1 l 1 Il
'8.20 0.30 0.40 0.50 0.60

T (units of TC)

FIG. 7. The average macrofacet radius r; for the
metastable droplet as a function of temperature T for system
sizes L = 64,72,96, and 128; the modified faceting tempera-
ture T}, is indicated. The inset shows the analytic prediction
for r¢ for an infinite droplet; the two lines are for 7y parallel
and diagonal to the lattice axes.
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FIG. 6. Metastable interfaces for droplets
of size 96° in a 1282 system at temperatures
T = 0.37T,047T.,0.45T. and 0.557,, near
the modified faceting transition temperature
Tk ~ 0.45T,.

higher than the ambient simulation temperature 7. No
exact prediction for F™* is available for a nonspherical
droplet; consequently, the parameters are chosen empir-
ically such that the droplet is metastable after quickly
relaxing from a T' = 0 cube to local equilibrium. If the
droplet were not metastable, it would then begin to de-
cay or grow. Above Tg, the metastable parameters are
unique to within the amplitude of thermal fluctuations.
Below T, the choice is complicated by exceedingly long
time scales for the evaporation of an unstable, faceted
interface; this is discussed in greater detail in Sec. V.
The consequence is that our results well below Tr may
be only near equilibrium. On the other hand, the results
nearest to Tr are very precise and the correct transition
behavior is preserved.

The droplet was initialized as a cube (ECS for T' =
0) and allowed to relax to equilibrium for 5000-30 000
Monte Carlo steps. The trial temperatures ranged from
T € [0.2T,,0.8 T¢] for system sizes L € [32,128]. The
largest contiguous facet on each of the six faces of the
cube is identified with the anticipated macrofacet. The
macrofacet radius r¢ is based on the average area of the
six largest facets Ay and the assumption that they are
approximately circular (i.e., 7% = Ay). In addition, the
microfacet size distribution for the entire surface is an-
alyzed in a manner similar to the planar interface. (To
make an exact comparison to the planar case, it would be
necessary to isolate the microfacets on the macrofacets
only. We judge the additional computational complex-
ity not to be worthwhile.) Similarly, due to the inher-
ent difficulty in defining the local width of a nonplanar
surface, (w?) is not measured. Figure 6 shows a se-
ries of metastable droplets above and below the effective
faceting temperature 5.

The macrofacet area was taken from the average of the
largest contiguous facets on each of the six faces of the
droplet. Assuming the macrofacet shape to be circular,
Fig. 7 shows the average macrofacet radius as a function
of temperature; it has been normalized to the droplet
radius, defined to be from the droplet center to the {100}
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face. The transition point is less apparent than in the
planar case; this is consistent with the predicted blurring
of the roughening transition. If the inflection point is
taken to be the transition point, T; would be well below
the equilibrium T'g, as expected. Alone this information
is not very useful. However, it is more or less consistent
with the expected form of r¢(T) (see inset of Fig. 7).

The variance o2 shows the transition much more
clearly as seen in Fig. 8; (A), shown for L=128 as an
inset, is not a useful quantity at least with the lim-
ited statistics provided by our simulations. However, o2
indicates the transition distinctly at Th/(L=128)/T. =
0.450 + 0.008, well below the equilibrium transition tem-
perature Tgr(o0) ~ 0.545T.. A weak dependence on L is
discernible in both the strength of the divergence and the
shift in T, consistent with the increase in the necessary
overpressure with decreasing system size.

Ideally the overpressure should be varied through a
range of values for a single trial temperature T in order
to identify the critical F*(T") which induces roughening.
However, for any given system size L, there is only one
F* at a given T which results in an exactly metastable
droplet. The metastable droplet is therefore not an en-
tirely appropriate context for checking the predictions of
Nozieres and Gallet for a static interface in the presence
of an overpressure. Rather it illustrates the qualitative
differences between an infinite planar surface and a finite
curved surface under the same conditions.

However, one value of F*(T") is accessible for each sys-
tem size L; specifically, for the set of parameters for which
the system is approximately at the modified faceting
transition. For the L=128 system shown in Fig. 6, this
is at Th =~ 0.4507,. We can now check the prediction
by examining Fig. 9: The data points are the empirically
chosen overpressures (controlled by varying the under-
cooling of the liquid phase) for two system sizes (L=128
and 64) required for metastability. The solid line is the
analytic prediction for F*(T') according to (14); it is the
overpressure required to roughen a static surface at tem-
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s - 72 I
20} 1
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%.2 0.3 0.4 0.5 0.6 0.7 0.8
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FIG. 8. The variance o? of the mean microfacet area for

the metastable droplet at T' € [0.3T,, 0.75T;] for system sizes
L = 64,72,96, and 128. The inset shows the mean microfacet
area (A) for L = 128.
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FIG. 9. The over pressures required for metastability at
T € [0.2T,0.65T] for system sizes L = 64 and 128 compared
to the analytic prediction (solid line) of Noziéres and Gallet,
(14).

perature T' < Tr. The point of intersection indicates the
trial temperature at which we expect to see the faceting
transition in our data: it is in good agreement. It also
indicates a shift in F™* related to system size which is
consistent with our observations.

V. THE UNSTABLE DROPLET

Away from metastability, the droplet described in Sec.
IV will tend to grow or shrink due to the imbalance be-
tween the overpressure and the surface tension. Since a
growing droplet may be morphologically unstable, we will
restrict our attention to the context of shrinking droplets
at coexistence. We observe that the droplet is forced
through a faceting transition to permit faster evaporation
via a diffusion-limited process; we propose a description
for this and predict the time dependence of the macro-
facet radii and the droplet radius.

A. Theory

A droplet at coexistence, T < Tg such that it would
be faceted in the metastable state, is constituted of both
faceted and roughened regions, each evaporating at dis-
parate rates. As the roughened portions quickly evap-
orate, the curvature along the edges of the faceted re-
gions becomes more pronounced; in the language of a
curved-planar two-phase system, the phase-boundary en-
ergy between the curved and planar phases increases.
Consequently, the system will try to further minimize its
surface energy by reducing the size of the macrofacets.
Far away from metastability, the faceted phase will be
forced out of existence and the surface will assume a
completely roughened state, not due to the kinetic ef-
fects of the moving planar interface but rather due to
rapid evaporation of the adjoining roughened regions. If
the droplet is close to metastability, the facets will only
shrink slightly, reaching a nucleation-limited evaporation
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regime where the faces remain faceted; for time scales
which are much shorter than the activation time of the
nucleated evaporation, the droplet behaves like the static
droplet described in Sec. IV.

These two evaporation mechanisms have characteris-
tic dynamical time dependences. In the diffusion-limited
regime, as the solid gives way to the liquid and latent
heat is absorbed to form the liquid, heat must be tran-
ported from infinity to the interface. This is controlled
by the diffusion constant D. Solving for the diffusion
equation in radial coordinates for a sphere of radius R
[23], the growth rate is shown to be

dR D 2dg
E?*E(A"”f>’ (15)

where Au = (U0 — ©)/Uoo is the dimensionless under-
cooling from infinity, u is defined as

T—-Tn

Aep
(A is the latent heat of transition) and dy is the capillary
length

do = YTmep/ 2.
Note that this solution implies the gquasistatic approz-
imation where the time scale for thermal relaxation is
much shorter than that for the interface dynamics; the
diffusion constant D was chosen to satisfy this constraint.
The dR/dt = 0 limit defines the critical droplet radius
R. = 2dy/Au so that we can rearrange (15) and inte-
grate it in the limit of small undercooling (i.e., the limit
of R, — 00), to give

u=

R(t) = (R3 — 6Ddgt)*/3. (16)

By contrast, the behavior of the macrofacets is con-
trolled by edge tension acting on their boundaries with
the adjoining roughened regions. This is analogous to the
decay of a 2D nucleation site which is smaller than the
critical size 7y < r}. If it is assumed that the adjoining
regions are near local equilibrium (i.e., the time scale for
their evaporation is much shorter than for the macrofacet

dynamics), then we expect that the facets will shrink ac-
cording to the Becker-Déring relation [24]; the volume
of a droplet should decay at a rate proportional to its
area dV/dt < A. For a near-circular 2D facet, the rate
of evaporation then goes as the facet circumference, and
we thus expect that r¢(t) is linear in t.

To sum up, an evaporating, faceted droplet is ex-
pected to be limited by its facets, which shrink at a con-
stant rate, until it becomes completely roughened. It
will then be roughly spherical with a radius described
by (16). It is expected that current experimental tech-
niques should be able to observe this behavior on faceted
crystals away from metastability. Certainly, indepen-
dent measurements have been made of nucleation- and
diffusion-limited growth [25] and evaporation on planar
and droplet crystal interfaces [26-28]. In particular, the
growth of crystals near equilibrium have been observed
[29]; the crystals became strongly faceted with sharp
edges. In contrast to the evaporation case, this appears
as if the crystal is being forced into the completely faceted
state. Although not presented here, this behavior has
also been observed in our simulations.

B. Results

We ran several trials at the largest system size possible
(L = 128) to minimize finite-size effects on the transition.
The droplet was initialized as a cube of size £ = 0.75L
at the ambient temperature T' = 0.3 T,, with the lig-
uid background also at T'. The coexistence temperature
T was also set to 0.3T; so that the droplet completely
evaporate (i.e., R, = 00). Except for local cooling at the
surface due to the absorption of latent heat, the system
was maintained at constant 7' via contact with a heat
bath at the boundaries. The latent heat and diffusion
rate were chosen such that the trial ended with the com-
plete evaporation of the solid within 5000-50 000 MCS.
The quantities ¢, (A), 02, and 7 (average system mag-
netization) were recorded; each gives a good indication
of the transition of the cube surface from a faceted to
a roughened state. Fig. 10 shows a time series of the
evolution of a typical evaporating droplet.

Figure 11 shows the time-dependent facet radius r¢(t)

t = 100 MCS 1250 MCS 1500 MCS

3750 MCS

5000 MCS

7000 MCS

1750 MCS

10000 MCS

FIG. 10. Evolution of an unstable droplet
as it evaporates from its initial cubic shape;
the system is 1282 with a 96° bulk inclusion
at T = 0.3Tc. The transition from a faceted
to a completely roughened state occurs at ap-
proximately ¢ = 5000 MCS.
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FIG. 11. The average macrofacet radius 75 as a function
of time for unstable, evaporating droplets for system size L =
128 at T' = 0.37. for various values of the latent heat A. The
solid line illustrates the early-time linear behavior.

for several runs with differing latent heat; the transition
from the faceted to roughened state is marked by a dis-
tinct change in slope. This is confirmed by a visual in-
spection of the cube surface; the entire time series of cube
images is observed in a continuous playback, similar to a
movie, and the point at which the the macrofacets disap-
pear is selected as the time of transition. Further, total
surface energy FEioi(t) and the moments of Pf(t) have
maxima at approximately the same transition point. Ex-
cept for the first several hundred Monte Carlo steps be-
fore reaching local equilibrium, 7 is linear in ¢ up to the
transition point.

Figure 12 shows the time-dependent droplet radius
R(t). The disappearance of the macrofacets is marked by

12 ] L1 1 I
1 2 4 3 4
t (107 MCS)
FIG. 12. The droplet radius R as a function of time for

an unstable, evaporating droplet of size £ = 96 at T = 0.3T%;
the dotted line indicates the transition from a faceted to a
roughened state. The dashed line is a fit to the analytic ex-
pression (15) and the solid line illustrates the early-time linear
behavior.
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a change in the behavior of dR/dt. At early times, R(t)
appears to be linear in ¢, with droplet evaporation lim-
ited by the decay of the macrofacets. After the droplet is
completely roughened, R(t) can be fitted by the expres-
sion (16) and as a by-product the capillary length dy can
be extracted for our choice of system parameters. We
find dy ~ 0.378 + 0.002 in units of lattice spacing.

VI. THE DRIVEN PLANAR INTERFACE

If an otherwise stable crystal interface is driven by an
external force such that it has a steady-state behavior
and a constant velocity, it may exhibit a dynamic or ki-
netic faceting transition. We have chosen to examine an
undercooled planar {100} interface; the bulk free-energy
difference between the liguid and solid phases provides a
driving force which is limited by the diffusion of latent
heat away from the interface. This case is of particu-
lar interest to us as it is representative of many crystal
growth problems including our current studies of den-
dritic growth within the context of the Mullins-Sekerka
instability [1,4]. Theoretical predictions [19] suggest that
the dynamic faceting transition of the interface is broad-
ened relative to the equilibrium behavior and that the
effective T is depressed as a function of the interface
velocity v. This is supported experimentally [30] and by
other simulation studies [31]. The interface is expected to
have a highly nonlinear response to a driving force while
in a faceted state, compared to a nearly linear response
when it roughens, due to the very different mechanisms
responsible for the growth [17]. Although we will not be
able to quantify the effect of the driving force, we will
characterize it in terms of the variables defined in pre-
ceding sections.

A. Theory

At T < Ty, for a sufficiently small driving force, the
interface moves via a nucleation process. Paraphrasing
Nozieres and Gallet [19], nucleation-limited growth is de-
scribed in terms of microfacets which spontaneously ap-
pear as thermal fluctuations on the faceted surface at a
rate I o e~ Es/T, The energy of formation is now

E¢(p) = 2mpEs — amp?’ AEy

for a circular microfacet of radius p (p is expected to be
larger than the lattice constant a); E; and AE} are the
step free-energy and bulk free-energy difference, respec-
tively. The critical microfacet radius (i.e., for p > p,
they grow; otherwise, they decay) is p. = E;/AEy. This
introduces a time scale for the creation of growing micro-
facets

1/7‘ X e_Ef(pc)/T_

After time t, there will be on the order of ¢/ micro-
facets, each growing with a lateral velocity v, which is
approximately constant in time. Since the edges of the
microfacets are always rough (in 2D), the velocity is lin-
early dependent on the driving force [17]. The separation
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between microfacets is

N~ pe\/ T/t

thus, they will join to form a new reference plane when
p (=vpt) ~ n. This defines the forward velocity of the
interface v = a/t as

2\ 2/3
v o (AEb) e—wEf/IBAEbT, 17)
E,

where a is the lattice spacing. The kinetic roughening
transition occurs when the fluctuation correlation length
is on the order of the critical microfacet size £ ~ p.; this
condition is equivalent to the expression (14).

At T > Ty, the interface is roughened and growth
is diffusion limited. The growth velocity is expected to
depend approximately linearly on the driving force F =
AEy ~ AT and should vary only with T for constant F.

B. Results

Our data refer to a {100} planar interface in a system
of size 256 x 256 x 48, initialized at T" = 0.57,. The
driving force F is supplied through the bulk free-energy
difference AE} by varying the melting temperature T,,
and thus the liguid undercooling AT = T,,—T. The spin
degeneracy is fixed at § = 2.0 and the ends of the system
are maintained at T. Under these conditions, AE}, varies
linearly with AT. The solid is also initialized at T to
minimize heating at the interface by allowing it to absorb
some of the latent heat which is produced. The latent
heat tends to heat both phases slightly, but temperatures
are always maintained well below the equilibrium faceting
transition temperature Tr. The undercooling is varied
with AT € [0.017¢,0.12 T¢] and the simulations are run
for 2000-10000 MCS until steady state is reached; each
data point is an average over one configuration (i.e., no
time averaging). Figure 13 represents a series of driven
planar interfaces at T' < Tg.

Our first observation is that the experimental param-
eters such as Ay, (A4), and o2 exhibit an oscillatory be-
havior related to the activated growth mechanism; the
period is 7 = a/v, where a is the lattice unit and v is
the interface velocity. For example, Fig. 14(a) shows Ay,
the surface area of the reference plane, as a function of
time for the slowest interface; Ap has a minimum when
the growing microfacets cover exactly half the reference
plane and a maximum when the current reference plane
has just finished forming. The quantities based on the
microfacet distribution change in a similar manner; only
a roughened plane will have a constant steady-state dis-
tribution. As the velocity of the interface increases with
increasing driving force AT, the period of the cycle de-
creases as shown in Figs. 14(b) and 14(c).

Figure 15 shows the velocity of the interfaces as a func-
tion of AT (closed triangles); the data are nonlinear and
consistent with (17) up to AT =~ 0.04T, where it then
becomes linear. Also shown is the reduced velocity v /v,
(open circles). The reference velocity v,(AT) is mea-
sured at a temperature above the equilibrium faceting

3513

AT =0.01 T,

AT =0.04 T,

AT =0.10 T,

FIG. 13. Driven planar interfaces for a 64 x 64 x 48 system
at T' = 0.57 with under-coolings of AT = 0.027¢,0.047,, and
0.17;. The lighter grey indicates higher surface level. The
equilibrium planar interface at T' = 0.57; in Figure 1 is the
undriven equivalent of this interface.

temperature Tr where v, is only dependent on the value
of AT. The reduced velocity clearly indicates that the
effective dynamic transition is near AT™ ~ 0.047.
Further evidence for this value comes from the charac-
ter of the oscillations shown in Fig. 15. As the dynamic

(a)
0.70

0.55

0.400

1000 2000 3000 4000 5000

o (D)
L05 mm
0'30 200 400 600 800
(c)
A

0.3
0 100 200 300 400 500 600
t (McS)
FIG. 14. The fractional area Ao of the exposed reference

plane for a driven equilibrium planar interface at T = 0.5T
for undercoolings of (a) AT = 0.02T;, (b) 0.04T;, and (c)
0.107c. Note that the time scales for each plot are different.
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FIG. 15. The average interface velocity v (closed trian-
gles) in units of lattice spacings per 1000 MCS for a driven
steady-state planar interface at T = 0.57¢ as a function of
the undercooling AT. Also shown is the reduced velocity
v/v(AT) (open circles). The dotted line indicates the an-
alytic expression for v (17); the dashed line shows the high
AT linear behavior.

roughening transition is approached, the smooth oscilla-
tions begin to break up. However, due to the broadened
nature of the transition, oscillatory behavior is still ob-
served at and above AT™. This is consistent with the
description of dynamical roughening near T% offered by
van Saarloos and Gilmer [32] wherein the interface is ex-
pected to be rough at long length scales but nucleated
growth is still predominant at short length scales. Only
near AT ~ 0.12T, does it appear that the interface has
roughened at nearly all length scales.

The interface width (w?) does not exhibit any cyclic
behavior except at the very lowest undercooling. Despite
the changing microfacet distribution, (w?) is relatively
smooth and relaxes to an average value once the ther-

0.8 T T T T T

0.7} * 2
0.6} + .
N% 0.5} { * + .

0.3 -

1 1 1 1 1
O'&.OO 0.04 0.08
AT

0.12

FIG. 16. The mean-squared width (w?) of a driven
steady-state planar interface at T' = 0.57¢ as a function of
undercooling AT. The inset shows the time-dependent width
of a typical driven interface from an initially flat condition.
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mal gradient reaches a steady state. Even in the case of
AT = 0.01T¢, the oscillatory behavior eventually damps
out and (w?) reaches a steady-state value. Presumably
this behavior is a reflection of the relatively large acti-
vation energy required for growth; when thermal flucta-
tions are smaller than the critical fluctuation size, the
growth may hesitate between layers. Figure 16 shows
steady-state values of (w?) for various AT, showing a
weak transition near 0.04T,; the inset shows a typical
time evolution of the width of an interface.

VII. CONCLUSIONS

In summary, we have simulated the faceting transition
of a cubic crystal interface, at equilibrium and nonequi-
librium and for planar and droplet geometries. We have
introduced a method for characterizing a surface, and
thus for identifying the transition, based upon the mi-
crofacet distribution. The approach works well in planar
and nonplanar contexts where traditional methods are
difficult to apply. The potential for use in nonequilib-
rium contexts is also evident.

Our results are consistent with other simulation stud-
ies in reproducing familiar critical behavior on the pla-
nar equilibrium interface. For a metastable droplet we
observed the equilibrium crystal shape in accord with
theoretical predictions. Our method clearly indicated
the faceting transition and showed that the presence of a
stabilizing external field had modified the transition be-
havior, depressing the effective transition temperature.
Our measurement of the critical external field required
to induce roughening at a specific temperature was in
very good agreement with renormalization analysis. For
the unstable droplet (with the stabilizing field removed),
we simulated the relaxation to a roughened state from
a faceted state and the subsequent evaporation of the
droplet. Based on our observations, we proposed a mech-
anism to account for the decay of the macrofacets in the
faceted phase and the decay of the droplet itself in both
the faceted and roughened phases. Finally, we introduced
a driving force in the form of a weak thermal gradient and
observed the kinetic faceting transition for a planar in-
terface at a temperature below the equilbrium transition
temperature. We demonstrated the continued usefulness
of our analysis technique, confirming the expected be-
havior of the transition, and noted the presence of a os-
cillatory behavior in the interface above and below the
transition.

We see this work as a preliminary step in the study
of the various structural transitions on a crystal surface.
We intend to develop and expand it, especially with re-
gard to the kinetic transitions, in the hope of making
closer contact with experimental studies. We also plan
to extend our simulations to other crystal lattices such
as hezagonal close packed, where multiple transitions are
observed experimentally [25, 33, 34].
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APPENDIX

For convenience, in this appendix, we derive an expres-
sion for the mean curvature & of a discrete interface, and
relate this to the mean facet area (A).

If the interface is at thermodynamic equilibrium and is
single valued h(x), then the Fourier spectrum of modes
has the form [16]

. T
(IR@) = (IF(h(x))[?) T

where v is the surface tension and F signifies a Fourier
transform

f(q = F(h(x)) = / dx €9 h(x).
When the local curvature & is small (V2h < 1) then
R? = (k%) = ((V?h)?) = F ((l¢°R(@)I?))

27 /a . -
- ]  da ¢*(h(@)h(a)")

2r/

~ % (-2;”)3 (L>a) (A1)

so that
le'e \/T (A2)

To relate & to the area of the local microfacet A, we show
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FIG. 17. Curvature of a discrete interface; see text.

in Fig. 17 the relationship of the interface to the under-
lying lattice with unit vector a. We choose a microfacet
whose center is approximately contingent with the apex
of the curved interface, and define its size | to be the
solution of the expression

Ah = h(x) — h(xq) = %m:z = a.
The distance from edge to edge is therefore

I =2||x — xo|| = 2+/2a/k,

where Ah is assumed to be one lattice constant a. The
microfacet area is then
A(k) = l(fi‘,)2 = 8a/k, (A3)

so that, using (A2), the mean microfacet area behaves
like

A(T) x T~Y2, T > Tg.
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FIG. 1. Equilibrium planar interfaces
for a 64 x 64 x 24 system at T =
0.4T.,0.5T,,0.55T,, and 0.7T.. The lighter
grey indicates higher surface level.
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FIG. 10. Evolution of an unstable droplet
as it evaporates from its initial cubic shape;
the system is 128 with a 96 bulk inclusion
at T' = 0.3T.. The transition from a faceted
to a completely roughened state occurs at ap-
proximately ¢ = 5000 MCS.



AT =0.01 T,

AT = 0.04 T,

FIG. 13. Driven planar interfaces for a 64 x 64 x 48 system
at T' = 0.5T, with under-coolings of AT = 0.027,0.04T,, and
0.1T.. The lighter grey indicates higher surface level. The
equilibrium planar interface at T' = 0.5T, in Figure 1 is the
undriven equivalent of this interface.



FIG.6. Metastable interfaces for droplets
of size 96% in a 128% system at temperatures
T = 0.37.,0.47T,,0.45T. and 0.557., near
the modified faceting transition temperature
Tr =~ 045T,.




